Matrix Factorization with Explicit Trust and Distrust Side Information for Improved Social Recommendation

Author:

Forsati Rana1,Mahdavi Mehrdad2,Shamsfard Mehrnoush3,Sarwat Mohamed4

Affiliation:

1. Shahid Beheshti University and University of Minnesota, Tehran, Iran

2. Michigan State University, East Lansing, MI

3. Shahid Beheshti University, Tehran, Iran

4. University of Minnesota, Minneapolis, MN

Abstract

With the advent of online social networks, recommender systems have became crucial for the success of many online applications/services due to their significance role in tailoring these applications to user-specific needs or preferences. Despite their increasing popularity, in general, recommender systems suffer from data sparsity and cold-start problems. To alleviate these issues, in recent years, there has been an upsurge of interest in exploiting social information such as trust relations among users along with the rating data to improve the performance of recommender systems. The main motivation for exploiting trust information in the recommendation process stems from the observation that the ideas we are exposed to and the choices we make are significantly influenced by our social context. However, in large user communities, in addition to trust relations, distrust relations also exist between users. For instance, in Epinions, the concepts of personal “web of trust” and personal “block list” allow users to categorize their friends based on the quality of reviews into trusted and distrusted friends, respectively. Hence, it will be interesting to incorporate this new source of information in recommendation as well. In contrast to the incorporation of trust information in recommendation which is thriving, the potential of explicitly incorporating distrust relations is almost unexplored. In this article, we propose a matrix factorization-based model for recommendation in social rating networks that properly incorporates both trust and distrust relationships aiming to improve the quality of recommendations and mitigate the data sparsity and cold-start users issues. Through experiments on the Epinions dataset, we show that our new algorithm outperforms its standard trust-enhanced or distrust-enhanced counterparts with respect to accuracy, thereby demonstrating the positive effect that incorporation of explicit distrust information can have on recommender systems.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lazy learning and sparsity handling in recommendation systems;Knowledge and Information Systems;2024-09-02

2. Three-layered location recommendation algorithm using spectral clustering;Social Network Analysis and Mining;2024-05-11

3. A Matrix Decomposition Recommendation Algorithm Introducing Untrusted Information between Users;2023 3rd International Conference on Electronic Information Engineering and Computer (EIECT);2023-11-17

4. Asymmetrical Attention Networks Fused Autoencoder for Debiased Recommendation;ACM Transactions on Intelligent Systems and Technology;2023-11-14

5. A fusion recommendation model based on mutual information and attention learning in heterogeneous social networks;Future Generation Computer Systems;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3