An Open-Source ML-Based Full-Stack Optimization Framework for Machine Learning Accelerators

Author:

Esmaeilzadeh Hadi1ORCID,Ghodrati Soroush1ORCID,Kahng Andrew2ORCID,Kim Joon Kyung1ORCID,Kinzer Sean1ORCID,Kundu Sayak3ORCID,Mahapatra Rohan1ORCID,Manasi Susmita Dey4ORCID,Sapatnekar Sachin5ORCID,Wang Zhiang6ORCID,Zeng Ziqing4ORCID

Affiliation:

1. University of California San Diego, La Jolla, United States

2. CSE and ECE, University of California San Diego, La Jolla, United States

3. Electrical and Computer Engineering, University of California San Diego, La Jolla, United States

4. University of Minnesota, Minneapolis, United States

5. Electrical and Computer Engineering, Univ of Minnesota, Minneapolis, United States

6. ECE, University of California San Diego, La Jolla, United States

Abstract

Parameterizable machine learning (ML) accelerators are the product of recent breakthroughs in ML. To fully enable their design space exploration (DSE), we propose a physical-design-driven, learning-based prediction framework for hardware-accelerated deep neural network (DNN) and non-DNN ML algorithms. It adopts a unified approach that combines power, performance, and area (PPA) analysis with frontend performance simulation, thereby achieving a realistic estimation of both backend PPA and system metrics such as runtime and energy. In addition, our framework includes a fully automated DSE technique, which optimizes backend and system metrics through an automated search of architectural and backend parameters. Experimental studies show that our approach consistently predicts backend PPA and system metrics with an average 7% or less prediction error for the ASIC implementation of two deep learning accelerator platforms, VTA and VeriGOOD-ML, in both a commercial 12 nm process and a research-oriented 45 nm process.

Funder

NSF

Defense Advanced Research Projects Agency

Publisher

Association for Computing Machinery (ACM)

Reference45 articles.

1. A. Agnesina K. Chang and S. K. Lim. 2020. VLSI placement parameter optimization using deep reinforcement learning. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’20). 1–9.

2. C. Bai Q. Sun J. Zhai Y. Ma B. Yu and M. D. F. Wong. 2021. BOOM-Explorer: RISC-V BOOM microarchitecture design space exploration framework. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’21).

3. S. Banerjee S. Burns P. Cocchini A. Davare S. Jain D. Kirkpatrick et al. 2020. A highly configurable hardware/software stack for DNN inference acceleration. Retrieved from https://arXiv:2111.15024

4. J. Bergstra and Y. Bengio. 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13 10 (2012) 281–305.

5. T. Chen T. Moreau Z. Jiang L. Zheng E. Yan M. Cowan et al. 2018. TVM: An automated end-to-end optimizing compiler for deep learning. In Proceedings of the USENIX Conference on Operating Systems Design and Implementation (OSDI’18). 578–594.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3