An adaptative agent architecture for holonic multi-agent systems

Author:

Hilaire Vincent1,Koukam Abder1,Rodriguez Sebastian1

Affiliation:

1. UTBM, France

Abstract

Self-organized multi-agent systems (MAS) are still difficult to engineer, because, to deal with real world problems, a self-organized MAS should exhibit complex adaptive organizations. In this respect the holonic paradigm provides a solution for modelling complex organizational structures. Holons are defined as self-similar entities that are neither parts nor wholes. The organizational structure produced by holons is called a holarchy. A holonic MAS (HMAS) considers agents as holons that are grouped according to holarchies. The goal of this article is to introduce an architecture that allows holons to adapt to their environment. The metaphor is based upon the immune system and considers stimulations/requests as antigens and selected antibodies as reactions/answers. Each antibody is activated by specific antigens and stimulated and/or inhibited by other antibodies. The immune system rewards (respectively penalizes) selected antibodies, which constitutes a good (respectively wrong) answer to a request. This mechanism allows an agent to choose from a set of possible behaviors, the one that seems the best fit for a specific context. In this context, each holon, atomic or composed, encapsulates an immune system in order to select a behavior. For composed holons, each sub-holon is represented by the selected antibody of its immune system. The super-holon's immune system therefore contains one antibody per sub-holon. This recursive architecture corresponds with the recursive nature of the holarchy. This architecture is presented with an example of simulated robot soccer. From experiments under different conditions we show that this architecture has interesting properties.

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hierarchical Model for Complex Adaptive System: From Adaptive Agent to AI Society;ACM Transactions on Autonomous and Adaptive Systems;2024-08-06

2. CLISDE: An Agent-Oriented Cladistic Island Genetic Algorithm;2023 10th International Conference on Soft Computing & Machine Intelligence (ISCMI);2023-11-25

3. Oil Supply Chain Integrated Planning based on Holonic Agents and Constraint Programming;Polytechnica;2022-11-01

4. A multiplicity of statistical models for modeling the degeneracy of living communicating holons;EPJ Web of Conferences;2022

5. HAMLET: A Hierarchical Agent-based Machine Learning Platform;ACM Transactions on Autonomous and Adaptive Systems;2021-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3