Discrete conformal mappings via circle patterns

Author:

Kharevych Liliya1,Springborn Boris2,Schröder Peter1

Affiliation:

1. California Institute of Technology, Pasadena, CA

2. Technische Universität Berlin

Abstract

We introduce a novel method for the construction of discrete conformal mappings from surface meshes of arbitrary topology to the plane. Our approach is based on circle patterns , that is, arrangements of circles---one for each face---with prescribed intersection angles. Given these angles, the circle radii follow as the unique minimizer of a convex energy. The method supports very flexible boundary conditions ranging from free boundaries to control of the boundary shape via prescribed curvatures. Closed meshes of genus zero can be parameterized over the sphere. To parameterize higher genus meshes, we introduce cone singularities at designated vertices. The parameter domain is then a piecewise Euclidean surface. Cone singularities can also help to reduce the often very large area distortion of global conformal maps to moderate levels. Our method involves two optimization problems: a quadratic program and the unconstrained minimization of the circle pattern energy. The latter is a convex function of logarithmic radius variables with simple explicit expressions for gradient and Hessian. We demonstrate the versatility and performance of our algorithm with a variety of examples.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference41 articles.

1. Variational principles for circle patterns and Koebe’s theorem

2. Bobenko A. I. and Springborn B. A. 2005. A discrete Laplace-Beltrami operator for simplicial surfaces. http://arxiv.org/abs/math.DG/0503219.]] Bobenko A. I. and Springborn B. A. 2005. A discrete Laplace-Beltrami operator for simplicial surfaces. http://arxiv.org/abs/math.DG/0503219.]]

3. Bowers P. L. and Hurdal M. K. 2003. Planar conformal mappings of piecewise flat surfaces. In Visualization and Mathematics III H.-C. Hege and K. Polthier Eds. Mathematics and Visualization. Springer-Verlag Berlin Germany 3--34.]] Bowers P. L. and Hurdal M. K. 2003. Planar conformal mappings of piecewise flat surfaces. In Visualization and Mathematics III H.-C. Hege and K. Polthier Eds. Mathematics and Visualization. Springer-Verlag Berlin Germany 3--34.]]

4. Kreispackungen und Triangulierungen;Brägger W.;L'Enseignement Mathématique,1992

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast ellipsoidal conformal and quasi-conformal parameterization of genus-0 closed surfaces;Journal of Computational and Applied Mathematics;2024-09

2. Smooth Bijective Projection in a High-order Shell;ACM Transactions on Graphics;2024-07-19

3. Seamless Parametrization in Penner Coordinates;ACM Transactions on Graphics;2024-07-19

4. Anisotropic triangular meshing using metric-adapted embeddings;Computer Aided Geometric Design;2024-06

5. Non‐Euclidean Sliced Optimal Transport Sampling;Computer Graphics Forum;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3