1. Chen, H., Harinen, T., Lee, J. Y., Yung, M., and Zhao, Z. (2020). CausalML: Python package for causal machine learning. arXiv preprint arXiv:2002.11631.
2. Sharma A. and Kiciman E. 2020. DoWhy: An end-to-end library for causal inference. arXiv preprint arXiv:2011.04216.
3. Kiciman, E., Dillon E.W., Edge, D, Foster, A., Jennings, J., Ma, C., Ness, R., Pawlowski N., Sharma, A. and Zhang C., (2022) A Causal AI Suite for Decision-Making, NeurIPS 2022 Workshop on Causality for Real-world Impact
4. Causal Inference and Machine Learning in Practice with EconML and CausalML
5. Hartford, J., Lewis, G., Leyton-Brown, K., and Taddy, M. (2017). Deep IV: A flexible approach for counterfactual prediction. In International Conference on Machine Learning (pp. 1414--1423). PMLR.