CAvatar

Author:

Chen Wenqiang1ORCID,Hu Yexin2ORCID,Song Wei3ORCID,Liu Yingcheng1ORCID,Torralba Antonio1ORCID,Matusik Wojciech1ORCID

Affiliation:

1. Massachusetts Institute of Technology, USA

2. Carnegie Mellon University, USA

3. University of New South Wales, Australia

Abstract

Human mesh reconstruction is essential for various applications, including virtual reality, motion capture, sports performance analysis, and healthcare monitoring. In healthcare contexts such as nursing homes, it is crucial to employ plausible and non-invasive methods for human mesh reconstruction that preserve privacy and dignity. Traditional vision-based techniques encounter challenges related to occlusion, viewpoint limitations, lighting conditions, and privacy concerns. In this research, we present CAvatar, a real-time human mesh reconstruction approach that innovatively utilizes pressure maps recorded by a tactile carpet as input. This advanced, non-intrusive technology obviates the need for cameras during usage, thereby safeguarding privacy. Our approach addresses several challenges, such as the limited spatial resolution of tactile sensors, extracting meaningful information from noisy pressure maps, and accommodating user variations and multiple users. We have developed an attention-based deep learning network, complemented by a discriminator network, to predict 3D human pose and shape from 2D pressure maps with notable accuracy. Our model demonstrates promising results, with a mean per joint position error (MPJPE) of 5.89 cm and a per vertex error (PVE) of 6.88 cm. To the best of our knowledge, we are the first to generate 3D mesh of human activities solely using tactile carpet signals, offering a novel approach that addresses privacy concerns and surpasses the limitations of existing vision-based and wearable solutions. The demonstration of CAvatar is shown at https://youtu.be/ZpO3LEsgV7Y.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3