Social Genesis in Computing Education

Author:

Tenenberg Josh1ORCID,Chinn Donald1

Affiliation:

1. University of Washington Tacoma, Tacoma, WA

Abstract

It is common to think of learning as the acquisition of knowledge by an individual learner. Starting a century ago, Lev Vygotsky developed a different perspective on learning, initiating a tradition of educational research whose momentum and influence continue to grow. One of Vygotsky's key principles is the general genetic law of cultural development that states that whatever skilled cognition that individuals carry out within their own minds is preceded by homologous activity carried out by a social group of which this individual was a part. In linking the individual and society through this law, learning is not simply a matter of the acquisition of domain knowledge. Rather, it is a cyclic process by which a social group, in its functioning through joint activity, leads to individuals taking into themselves (i.e., internalizing ) the social forms of activity. In this article, our goal is to explicate Vygotsky's genetic law and demonstrate its utility for yielding novel insight into computing education. We provide an extended illustration of the use of Vygotsky's law in examining a teacher and students in a university setting write code together during a class session. What our analysis reveals is that the teacher and students together enact a sequential, rule-based, and dialogical process of problem decomposition and code writing far different from the plan and schema-based models for programming that have emerged from prior research focused on the individual student and their cognitive strategies and structures. We provide commentary on implications of the genetic law for both research and practice in computing education.

Publisher

Association for Computing Machinery (ACM)

Subject

Education,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Notional machines: Retrieving background practices of perception and action;ACM Transactions on Computing Education;2024-08-13

2. Conceptualizing the Researcher-Theory Relation;ACM Transactions on Computing Education;2022-12-29

3. Arising of Informal Women's Learn-to-code Communities;ACM Transactions on Computing Education;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3