Staged metaprogramming for shader system development

Author:

Seitz Kerry A.1,Foley Theresa2,Porumbescu Serban D.1,Owens John D.1

Affiliation:

1. University of California

2. NVIDIA

Abstract

The shader system for a modern game engine comprises much more than just compilation of source code to executable kernels. Shaders must also be exposed to art tools, interfaced with engine code, and specialized for performance. Engines typically address each of these tasks in an ad hoc fashion, without a unifying abstraction. The alternative of developing a more powerful compiler framework is prohibitive for most engines. In this paper, we identify staged metaprogramming as a unifying abstraction and implementation strategy to develop a powerful shader system with modest effort. By using a multi-stage language to perform metaprogramming at compile time, engine-specific code can consume, analyze, transform, and generate shader code that will execute at runtime. Staged metaprogramming reduces the effort required to implement a shader system that provides earlier error detection, avoids repeat declarations of shader parameters, and explores opportunities to improve performance. To demonstrate the value of this approach, we design and implement a shader system, called Selos, built using staged metaprogramming. In our system, shader and application code are written in the same language and can share types and functions. We implement a design space exploration framework for Selos that investigates static versus dynamic composition of shader features, exploring the impact of shader specialization in a deferred renderer. Staged metaprogramming allows Selos to provide compelling features with a simple implementation.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference53 articles.

1. Johan Andersson. 2011. DirectX 11 Rendering in Battlefield 3. Game Developers Conference 2011. http://www.dice.se/news/directx-11-rendering-battlefield-3/

2. Syntactic closures

3. Sean Baxter. 2019. Circle. https://github.com/seanbaxter/circle

4. Nir Benty Kai-Hwa Yao Theresa Foley Matthew Oakes Conor Lavelle and Chris Wyman. 2018. The Falcor Rendering Framework. https://github.com/NVIDIAGameWorks/Falcor https://github.com/NVIDIAGameWorks/Falcor.

5. The Direct3D 10 system

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3