A Survey on Collaborative Learning for Intelligent Autonomous Systems

Author:

Anjos Julio C. S. Dos1ORCID,Matteussi Kassiano J.2ORCID,Orlandi Fernanda C.2ORCID,Barbosa Jorge L. V.3ORCID,Silva Jorge Sá4ORCID,Bittencourt Luiz F.5ORCID,Geyer Cláudio F. R.2ORCID

Affiliation:

1. Federal University of Ceara, PPGETI, Brazil

2. Federal University of Rio Grande do Sul, Institute of Informatics, UFRGS/PPGC, Brazil

3. University of Vale do Rio dos Sinos, UNISINOS/PPGCA, Brazil

4. University of Coimbra, INESC Coimbra

5. University of Campinas, Institute of Computing, Brazil

Abstract

This survey examines approaches to promote Collaborative Learning in distributed systems for emergent Intelligent Autonomous Systems (IAS). The study involves a literature review of Intelligent Autonomous Systems based on Collaborative Learning, analyzing aspects in four dimensions: computing environment, performance concerns, system management, and privacy concerns, mapping the significant requirements of systems to the emerging Artificial intelligence models. Furthermore, the article explores Collaborative Learning Taxonomy for IAS to demonstrate the correlation between IoT, Big Data, and Human-in-the-Loop. Several technological open issues exist in the aforementioned domains (such as in applications of autonomous driving, robotics in healthcare, cyber security, and others) to effectively achieve the future deployment of Intelligent Autonomous Systems. This Survey aims to organize concepts around IAS, indicating the approaches used to extract knowledge from data in Collaborative Learning for IAS, and identifying open issues. Moreover, it presents a guide to overcoming the existing challenges in decision-making mechanisms with IAS, providing a holistic vision of Big Data and Human-in-the-Loop.

Funder

CAPES

PNPD program

Paulo Research Foundation (FAPESP), CEREIA

FAPESP–MCTIC–CGI.BR

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3