Variational Barycentric Coordinates

Author:

Dodik Ana1ORCID,Stein Oded2ORCID,Sitzmann Vincent1ORCID,Solomon Justin1ORCID

Affiliation:

1. MIT CSAIL, USA

2. University of Southern California, USA and MIT CSAIL, USA

Abstract

We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, in practice limiting the choice of objective function. In contrast, we directly parameterize the continuous function that maps any coordinate in a polytope's interior to its barycentric coordinates using a neural field. This formulation is enabled by our theoretical characterization of barycentric coordinates, which allows us to construct neural fields that parameterize the entire function class of valid coordinates. We demonstrate the flexibility of our model using a variety of objective functions, including multiple smoothness and deformation-aware energies; as a side contribution, we also present mathematically-justified means of measuring and minimizing objectives like total variation on discontinuous neural fields. We offer a practical acceleration strategy, present a thorough validation of our algorithm, and demonstrate several applications.

Funder

National Science Foundation

MIT?IBM Watson AI Laboratory

Air Force Office of Scientific Research

CSAIL Systems that Learn

Toyota?CSAIL Joint Research Center

Army Research Office

Singapore DSTA

Toyota Research Institute

Adobe Systems

Google

Amazon Science Hub

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference57 articles.

1. Symmetric Volume Maps: Order-invariant Volumetric Mesh Correspondence with Free Boundary

2. Neural jacobian fields

3. Dmitry Anisimov , Daniele Panozzo , and Kai Hormann . 2017. Blended barycentric coordinates. Computer Aided Geometric Design 52--53 ( 2017 ), 205--216. Dmitry Anisimov, Daniele Panozzo, and Kai Hormann. 2017. Blended barycentric coordinates. Computer Aided Geometric Design 52--53 (2017), 205--216.

4. An Introduction to Total Variation for Image Analysis

5. A simple geometric model for elastic deformations

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biharmonic Coordinates and their Derivatives for Triangular 3D Cages;ACM Transactions on Graphics;2024-07-19

2. Stochastic Computation of Barycentric Coordinates;ACM Transactions on Graphics;2024-07-19

3. Neural Monte Carlo Fluid Simulation;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

4. A Survey on Cage‐based Deformation of 3D Models;Computer Graphics Forum;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3