Large Language Models are Competitive Near Cold-start Recommenders for Language- and Item-based Preferences

Author:

Sanner Scott1ORCID,Balog Krisztian2ORCID,Radlinski Filip3ORCID,Wedin Ben4ORCID,Dixon Lucas5ORCID

Affiliation:

1. University of Toronto, Canada

2. Google, Norway

3. Google, United Kingdom

4. Google, USA

5. Google, France

Publisher

ACM

Reference45 articles.

1. Jacob Austin Augustus Odena Maxwell Nye Maarten Bosma Henryk Michalewski David Dohan Ellen Jiang Carrie Cai Michael Terry Quoc Le and Charles Sutton. 2021. Program Synthesis with Large Language Models. arxiv:2108.07732 [cs.PL] Jacob Austin Augustus Odena Maxwell Nye Maarten Bosma Henryk Michalewski David Dohan Ellen Jiang Carrie Cai Michael Terry Quoc Le and Charles Sutton. 2021. Program Synthesis with Large Language Models. arxiv:2108.07732 [cs.PL]

2. Transparent, Scrutable and Explainable User Models for Personalized Recommendation

3. On Interpretation and Measurement of Soft Attributes for Recommendation

4. Defining and Supporting Narrative-driven Recommendation

5. Vadim Borisov Kathrin Seßler Tobias Leemann Martin Pawelczyk and Gjergji Kasneci. 2023. Language Models are Realistic Tabular Data Generators. arxiv:2210.06280 [cs.LG] Vadim Borisov Kathrin Seßler Tobias Leemann Martin Pawelczyk and Gjergji Kasneci. 2023. Language Models are Realistic Tabular Data Generators. arxiv:2210.06280 [cs.LG]

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chain-of-thought prompting empowered generative user modeling for personalized recommendation;Neural Computing and Applications;2024-09-14

2. Optimizing Novelty of Top-k Recommendations using Large Language Models and Reinforcement Learning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys);Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. CoRAL: Collaborative Retrieval-Augmented Large Language Models Improve Long-tail Recommendation;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3