A System for Automated Industrial Test Laboratory Scheduling

Author:

Danzinger Philipp1ORCID,Geibinger Tobias1ORCID,Janneau David2ORCID,Mischek Florian1ORCID,Musliu Nysret1ORCID,Poschalko Christian2ORCID

Affiliation:

1. Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, DBAI, TU Wien, Vienna, Austria

2. Robert Bosch AG, Vienna, Austria

Abstract

Automated scheduling solutions are tremendously important for the efficient operation of industrial laboratories. The Test Laboratory Scheduling Problem (TLSP) is an extension of the well-known Resource Constrained Project Scheduling Problem (RCPSP) and captures the specific requirements of such laboratories. In addition to several new scheduling constraints, it features a grouping phase, where the jobs to be scheduled are assembled from smaller units. In this work, we introduce an innovative scheduling system that allows the efficient and flexible generation of schedules for TLSP. It features a new Constraint Programming model that covers both the grouping and the scheduling aspect, as well as a hybrid Very Large Neighborhood Search that internally uses the CP model. Our experimental results on generated and real-world benchmark instances show that good results can be obtained even compared to settings which have a good grouping already provided, including several new best known solutions for these instances. Our algorithms for TLSP have been successfully implemented in a real-world industrial test laboratory. We provide a detailed description of the deployed system as well as additional useful soft constraints supported by the solvers and general lessons learned. This includes a discussion of the choice of soft constraint weights, with an analysis on the impact and relation of different objectives to each other. Our experiments show that some soft constraints complement each other well, while others require explicit trade-offs via their relative weights.

Funder

Austrian Federal Ministry for Digital and Economic Affairs

National Foundation for Research, Technology and Development

Christian Doppler Research Association

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging problem-independent hyper-heuristics for real-world test laboratory scheduling;Proceedings of the Genetic and Evolutionary Computation Conference;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3