Affiliation:
1. Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, DBAI, TU Wien, Vienna, Austria
2. Robert Bosch AG, Vienna, Austria
Abstract
Automated scheduling solutions are tremendously important for the efficient operation of industrial laboratories. The
Test Laboratory Scheduling Problem (TLSP)
is an extension of the well-known
Resource
Constrained Project Scheduling Problem (RCPSP)
and captures the specific requirements of such laboratories. In addition to several new scheduling constraints, it features a grouping phase, where the jobs to be scheduled are assembled from smaller units. In this work, we introduce an innovative scheduling system that allows the efficient and flexible generation of schedules for TLSP. It features a new Constraint Programming model that covers both the grouping and the scheduling aspect, as well as a hybrid Very Large Neighborhood Search that internally uses the CP model. Our experimental results on generated and real-world benchmark instances show that good results can be obtained even compared to settings which have a good grouping already provided, including several new best known solutions for these instances. Our algorithms for TLSP have been successfully implemented in a real-world industrial test laboratory. We provide a detailed description of the deployed system as well as additional useful soft constraints supported by the solvers and general lessons learned. This includes a discussion of the choice of soft constraint weights, with an analysis on the impact and relation of different objectives to each other. Our experiments show that some soft constraints complement each other well, while others require explicit trade-offs via their relative weights.
Funder
Austrian Federal Ministry for Digital and Economic Affairs
National Foundation for Research, Technology and Development
Christian Doppler Research Association
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献