CWF: Consolidating Weak Features in High-quality Mesh Simplification

Author:

Xu Rui1ORCID,Liu Longdu1ORCID,Wang Ningna2ORCID,Chen Shuangmin3ORCID,Xin Shiqing1ORCID,Guo Xiaohu4ORCID,Zhong Zichun5ORCID,Komura Taku6ORCID,Wang Wenping7ORCID,Tu Changhe1ORCID

Affiliation:

1. Shandong University, Qingdao, China

2. University of Texas at Dallas, Dallas, United States of America

3. Qingdao University of Science and Technology, Qingdao, China

4. The University of Texas at Dallas, Dallas, United States of America

5. Wayne State University, wayne, United States of America

6. The University of Hong Kong, Hong Kong, China

7. Texas A&M University, College Station, United States of America

Abstract

In mesh simplification, common requirements like accuracy, triangle quality, and feature alignment are often considered as a trade-off. Existing algorithms concentrate on just one or a few specific aspects of these requirements. For example, the well-known Quadric Error Metrics (QEM) approach [Garland and Heckbert 1997] prioritizes accuracy and can preserve strong feature lines/points as well, but falls short in ensuring high triangle quality and may degrade weak features that are not as distinctive as strong ones. In this paper, we propose a smooth functional that simultaneously considers all of these requirements. The functional comprises a normal anisotropy term and a Centroidal Voronoi Tessellation (CVT) [Du et al. 1999] energy term, with the variables being a set of movable points lying on the surface. The former inherits the spirit of QEM but operates in a continuous setting, while the latter encourages even point distribution, allowing various surface metrics. We further introduce a decaying weight to automatically balance the two terms. We selected 100 CAD models from the ABC dataset [Koch et al. 2019], along with 21 organic models, to compare the existing mesh simplification algorithms with ours. Experimental results reveal an important observation: the introduction of a decaying weight effectively reduces the conflict between the two terms and enables the alignment of weak features. This distinctive feature sets our approach apart from most existing mesh simplification methods and demonstrates significant potential in shape understanding. Please refer to the teaser figure for illustration.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3