Partitioned Triangular Tridiagonalization

Author:

Rozložník Miroslav1,Shklarski Gil2,Toledo Sivan3

Affiliation:

1. Academy of Sciences of the Czech Republic

2. Microsoft

3. Tel-Aviv University

Abstract

We present a partitioned algorithm for reducing a symmetric matrix to a tridiagonal form, with partial pivoting. That is, the algorithm computes a factorization PAPT = LTLT , where, P is a permutation matrix, L is lower triangular with a unit diagonal and entries’ magnitudes bounded by 1, and T is symmetric and tridiagonal. The algorithm is based on the basic (nonpartitioned) methods of Parlett and Reid and of Aasen. We show that our factorization algorithm is componentwise backward stable (provided that the growth factor is not too large), with a similar behavior to that of Aasen’s basic algorithm. Our implementation also computes the QR factorization of T and solves linear systems of equations using the computed factorization. The partitioning allows our algorithm to exploit modern computer architectures (in particular, cache memories and high-performance blas libraries). Experimental results demonstrate that our algorithms achieve approximately the same level of performance as the partitioned Bunch-Kaufman factor and solve routines in lapack .

Funder

Israel Science Foundation

Grant Agency of the Czech Academy of Sciences

United States-Israel Binational Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PLASMA;ACM Transactions on Mathematical Software;2019-06-30

2. Symmetric Indefinite Linear Solver Using OpenMP Task on Multicore Architectures;IEEE Transactions on Parallel and Distributed Systems;2018-08-01

3. Symmetric Indefinite Triangular Factorization Revealing the Rank Profile Matrix;Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation;2018-07-11

4. Solving dense symmetric indefinite systems using GPUs;Concurrency and Computation: Practice and Experience;2017-03-03

5. Non-GPU-resident symmetric indefinite factorization;Concurrency and Computation: Practice and Experience;2016-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3