A Sparse Distributed Gigascale Resolution Material Point Method

Author:

Qiu Yuxing1ORCID,Reeve Samuel Temple2ORCID,Li Minchen3ORCID,Yang Yin4ORCID,Slattery Stuart Ryan2ORCID,Jiang Chenfanfu3ORCID

Affiliation:

1. University of California, Los Angeles, CA

2. Oak Ridge National Laboratory, Oak Ridge, TN

3. University of California, Los Angeles & Timestep Technologies

4. University of Utah & Timestep Technologies, Salt Lake City, UT

Abstract

In this article, we present a four-layer distributed simulation system and its adaptation to the Material Point Method (MPM). The system is built upon a performance portable C++ programming model targeting major High-Performance-Computing (HPC) platforms. A key ingredient of our system is a hierarchical block-tile-cell sparse grid data structure that is distributable to an arbitrary number of Message Passing Interface (MPI) ranks. We additionally propose strategies for efficient dynamic load balance optimization to maximize the efficiency of MPI tasks. Our simulation pipeline can easily switch among backend programming models, including OpenMP and CUDA, and can be effortlessly dispatched onto supercomputers and the cloud. Finally, we construct benchmark experiments and ablation studies on supercomputers and consumer workstations in a local network to evaluate the scalability and load balancing criteria. We demonstrate massively parallel, highly scalable, and gigascale resolution MPM simulations of up to 1.01 billion particles for less than 323.25 seconds per frame with 8 OpenSSH-connected workstations.

Funder

NSF

DOE ORNL contract

Exascale Computing Project

U.S. Department of Energy

UT-Battelle, LLC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference54 articles.

1. T. Amada, M. Imura, Y. Yasumuro, Y. Manabe, and K. Chihara. 2004. Particle-based fluid simulation on GPU. In Proceedings of the ACM Workshop on General-Purpose Computing on Graphics Processors. Vol. 41, 42.

2. Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion: Expressing locality and independence with logical regions. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE, 1–11.

3. A partitioning strategy for nonuniform problems on multiprocessors;Berger Marsha J.;IEEE Transactions on Computers,1987

4. Spatially Adaptive Volume Tools in Bifrost

5. Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdag, Robert Heaphy, and Lee Ann Riesen. 2007. Hypergraph-based dynamic load balancing for adaptive scientific computations. In Proceedings of the 2007 IEEE International Parallel and Distributed Processing Symposium. IEEE, 1–11.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Dynamic Duo of Finite Elements and Material Points;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

2. Neural Stress Fields for Reduced-order Elastoplasticity and Fracture;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3