Deep Multimodal Data Fusion

Author:

Zhao Fei1ORCID,Zhang Chengcui1ORCID,Geng Baocheng1ORCID

Affiliation:

1. The University of Alabama at Birmingham, Birmingham, AL, USA

Abstract

Multimodal Artificial Intelligence (Multimodal AI), in general, involves various types of data (e.g., images, texts, or data collected from different sensors), feature engineering (e.g., extraction, combination/fusion), and decision-making (e.g., majority vote). As architectures become more and more sophisticated, multimodal neural networks can integrate feature extraction, feature fusion, and decision-making processes into one single model. The boundaries between those processes are increasingly blurred. The conventional multimodal data fusion taxonomy (e.g., early/late fusion), based on which the fusion occurs in, is no longer suitable for the modern deep learning era. Therefore, based on the main-stream techniques used, we propose a new fine-grained taxonomy grouping the state-of-the-art (SOTA) models into five classes: Encoder-Decoder methods, Attention Mechanism methods, Graph Neural Network methods, Generative Neural Network methods, and other Constraint-based methods. Most existing surveys on multimodal data fusion are only focused on one specific task with a combination of two specific modalities. Unlike those, this survey covers a broader combination of modalities, including Vision + Language (e.g., videos, texts), Vision + Sensors (e.g., images, LiDAR), and so on, and their corresponding tasks (e.g., video captioning, object detection). Moreover, a comparison among these methods is provided, as well as challenges and future directions in this area.

Publisher

Association for Computing Machinery (ACM)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3