Deep Compressive Offloading

Author:

Yao Shuochao1,Li Jinyang2,Liu Dongxin2,Wang Tianshi2,Liu Shengzhong2,Shao Huajie2,Abdelzaher Tarek2

Affiliation:

1. George Mason University, Fairfax, VA, USA

2. University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA

Abstract

Future mobile and embedded systems will be smarter and more user-friendly. They will perceive the physical environment, understand human context, and interact with end-users in a human-like fashion. Daily objects will be capable of leveraging sensor data to perform complex estimation and recognition tasks, such as recognizing visual inputs, understanding voice commands, tracking objects, and interpreting human actions. This raises important research questions on how to endow low-end embedded and mobile devices with the appearance of intelligence despite their resource limitations.

Publisher

Association for Computing Machinery (ACM)

Reference7 articles.

1. Kaiming He Xiangyu Zhang Shaoqing Ren and Jian Sun. 2016. Deep residual learning for image recognition in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 770--778. Kaiming He Xiangyu Zhang Shaoqing Ren and Jian Sun. 2016. Deep residual learning for image recognition in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 770--778.

2. FastDeepIoT

3. Fabian Mentzer Eirikur Agustsson Michael Tschannen Radu Timofte and Luc Van Gool. 2018. Conditional probability models for deep image compression in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 4394--4402. Fabian Mentzer Eirikur Agustsson Michael Tschannen Radu Timofte and Luc Van Gool. 2018. Conditional probability models for deep image compression in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 4394--4402.

4. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coarse-to-Fine: A hierarchical DNN inference framework for edge computing;Future Generation Computer Systems;2024-08

2. Federated Learning Based Satellite-Marine Integrated Training for Marine Edge Intelligence;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

3. Internet of Battlefield Things: Challenges, Opportunities, and Emerging Directions;IoT for Defense and National Security;2022-12-28

4. EECDN: Energy-efficient Cooperative DNN Edge Inference in Wireless Sensor Networks;ACM Transactions on Internet Technology;2022-11-14

5. A two-level architecture for deep learning applications in mobile edge computing;Proceedings of the 17th ACM Workshop on Mobility in the Evolving Internet Architecture;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3