Efficient Generation of Hidden Outliers for Improved Outlier Detection

Author:

Cribeiro-Ramallo Jose1ORCID,Arzamasov Vadim1ORCID,Böhm Klemens1ORCID

Affiliation:

1. Karlsruhe Insitute of Technology, Germany

Abstract

Outlier generation is a popular technique used to solve important outlier detection tasks. Generating outliers with realistic behavior is challenging. Popular existing methods tend to disregard the “multiple views” property of outliers in high-dimensional spaces.The only existing method accounting for this property falls short in efficiency and effectiveness. We propose Bisect , a new outlier generation method that creates realistic outliers mimicking said property. To do so, Bisect employs a novel proposition introduced in this article stating how to efficiently generate said realistic outliers. Our method has better guarantees and complexity than the current method for recreating “multiple views”. We use the synthetic outliers generated by Bisect to effectively enhance outlier detection in diverse datasets, for multiple use cases. For instance, oversampling with Bisect reduced the error by up to 3 times when compared with the baselines.

Publisher

Association for Computing Machinery (ACM)

Reference44 articles.

1. Naoki Abe, Bianca Zadrozny, and John Langford. 2006. Outlier detection by active learning. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. 504–509.

2. Outlier Analysis

3. On the Surprising Behavior of Distance Metrics in High Dimensional Space

4. Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. 2001. On the Surprising Behavior of Distance Metrics in High Dimensional Space. In Database Theory — ICDT 2001, Jan Van den Bussche and Victor Vianu (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 420–434.

5. Charu C Aggarwal and Saket Sathe. 2017. Outlier ensembles: An introduction. Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3