Fairness in responsive parallelism

Author:

Muller Stefan K.1,Westrick Sam1,Acar Umut A.2

Affiliation:

1. Carnegie Mellon University, USA

2. Carnegie Mellon University, USA / Inria, France

Abstract

Research on parallel computing has historically revolved around compute-intensive applications drawn from traditional areas such as high-performance computing. With the growing availability and usage of multicore chips, applications of parallel computing now include interactive parallel applications that mix compute-intensive tasks with interaction, e.g., with the user or more generally with the external world. Recent theoretical work on responsive parallelism presents abstract cost models and type systems for ensuring and reasoning about responsiveness and throughput of such interactive parallel programs. In this paper, we extend prior work by considering a crucial metric: fairness. To express rich interactive parallel programs, we allow programmers to assign priorities to threads and instruct the scheduler to obey a notion of fairness. We then propose the fairly prompt scheduling principle for executing such programs; the principle specifies the schedule for multithreaded programs on multiple processors. For such schedules, we prove theoretical bounds on the execution and response times of jobs of various priorities. In particular, we bound the amount, i.e., stretch, by which a low-priority job can be delayed by higher-priority work. We also present an algorithm designed to approximate the fairly prompt scheduling principle on multicore computers, implement the algorithm by extending the Standard ML language, and present an empirical evaluation.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disentanglement with Futures, State, and Interaction;Proceedings of the ACM on Programming Languages;2024-01-05

2. Automatic Parallelism Management;Proceedings of the ACM on Programming Languages;2024-01-05

3. An Efficient Scheduler for Task-Parallel Interactive Applications;Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures;2023-06-17

4. Responsive Parallelism with Synchronization;Proceedings of the ACM on Programming Languages;2023-06-06

5. Entanglement detection with near-zero cost;Proceedings of the ACM on Programming Languages;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3