Thermal Earring

Author:

Xue Qiuyue Shirley1ORCID,Liu Yujia2ORCID,Breda Joseph1ORCID,Springston Mastafa3ORCID,Iyer Vikram1ORCID,Patel Shwetak1ORCID

Affiliation:

1. Computer Science and Engineering, University of Washington, USA

2. Electrical and Computer Engineering, University of Washington, USA

3. School of Medicine, University of Washington, USA

Abstract

Body temperature is an important vital sign which can indicate fever and is known to be correlated with activities such as eating, exercise and stress. However, continuous temperature monitoring poses a significant challenge. We present Thermal Earring, a first-of-its-kind smart earring that enables a reliable wearable solution for continuous temperature monitoring. The Thermal Earring takes advantage of the unique position of earrings in proximity to the head, a region with tight coupling to the body unlike watches and other wearables which are more loosely worn on extremities. We develop a hardware prototype in the form factor of real earrings measuring a maximum width of 11.3 mm and a length of 31 mm, weighing 335 mg, and consuming only 14.4 uW which enables a battery life of 28 days in real-world tests. We demonstrate this form factor is small and light enough to integrate into real jewelry with fashionable designs. Additionally, we develop a dual sensor design to differentiate human body temperature change from environmental changes. We explore the use of this novel sensing platform and find its measured earlobe temperatures are stable within ±0.32 °C during periods of rest. Using these promising results, we investigate its capability of detecting fever by gathering data from 5 febrile patients and 20 healthy participants. Further, we perform the first-ever investigation of the relationship between earlobe temperature and a variety of daily activities, demonstrating earlobe temperature changes related to eating and exercise. We also find the surprising result that acute stressors such as public speaking and exams cause measurable changes in earlobe temperature. We perform multi-day in-the-wild experiments and confirm the temperature changes caused by these daily activities in natural daily scenarios. This initial exploration seeks to provide a foundation for future automatic activity detection and earring-based wearables.

Funder

Washington Research Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference51 articles.

1. Designing a desirable smart bracelet for older adults

2. Apple. 2023. Apple Watch. https://www.apple.com/watch/. Accessed: 2023-04-12.

3. Apple. 2023. Track your nightly wrist temperature changes with Apple Watch. https://support.apple.com/en-us/HT213275. Accessed: 2023-05-10.

4. Nenya

5. EarBit

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3