Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs

Author:

Bressan Marco1ORCID

Affiliation:

1. Università degli Studi di Milano, Italy

Abstract

We study the following problem: Given an integer k ≥ 3 and a simple graph G , sample a connected induced k -vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.

Funder

Algorithms and Learning for AI

Bertinoro International Center for Informatics

European Research Council under the Starting Grant

Department of Computer Science of the Sapienza University of Rome

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference41 articles.

1. Mixing time bounds for graphlet random walks

2. David Aldous and James Fill. 1995. Reversible Markov Chains and Random Walks on Graphs. Retrieved from https://www.stat.berkeley.edu/aldous/RWG/book.pdf.

3. Biomolecular network motif counting and discovery by color coding

4. Color-coding

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3