Memory-based Distribution Shift Detection for Learning Enabled Cyber-Physical Systems with Statistical Guarantees

Author:

Yang Yahan1,Kaur Ramneet1,Dutta Souradeep1,Lee Insup1

Affiliation:

1. University of Pennsylvania, Philadelphia, USA

Abstract

Incorporating learning based components in the current state-of-the-art cyber physical systems (CPS) has been a challenge due to the brittleness of the underlying deep neural networks. On the bright side, if executed correctly with safety guarantees, this has the ability to revolutionize domains like autonomous systems, medicine and other safety critical domains. This is because, it would allow system designers to use high dimensional outputs from sensors like camera and LiDAR. The trepidation in deploying systems with vision and LiDAR components comes from incidents of catastrophic failures in the real world. Recent reports of self-driving cars running into difficult to handle scenarios is ingrained in the software components which handle such sensor inputs. The ability to handle such high dimensional signals is due to the explosion of algorithms which use deep neural networks. Sadly, the reason behind the safety issues is also due to deep neural networks themselves. The pitfalls occur due to possible over-fitting, and lack of awareness about the blind spots induced by the training distribution. Ideally, system designers would wish to cover as many scenarios during training as possible. But, achieving a meaningful coverage is impossible. This naturally leads to the following question: Is it feasible to flag out-of-distribution (OOD) samples without causing too many false alarms? Such an OOD detector should be executable in a fashion that is computationally efficient. This is because OOD detectors often are executed as frequently as the sensors are sampled. Our aim in this paper is to build an effective anomaly detector. To this end, we propose the idea of a memory bank to cache data samples which are representative enough to cover most of the in-distribution data. The similarity with respect to such samples can be a measure of familiarity of the test input. This is made possible by an appropriate choice of distance function tailored to the type of sensor we are interested in. Additionally, we adapt conformal anomaly detection framework to capture the distribution shifts with a guarantee of false alarm rate. We report the performance of our technique on two challenging scenarios: a self-driving car setting implemented inside the simulator CARLA with image inputs and autonomous racing car navigation setting with LiDAR inputs. From the experiments, it is clear that a deviation from in-distribution setting can potentially lead to unsafe behavior. Although it should be noted that not all OOD inputs lead to precarious situations in practice, but staying in-distribution is akin to staying within a safety bubble and predictable behavior. An added benefit of our memory based approach is that the OOD detector produces interpretable feedback for a human designer. This is of utmost importance since it recommends a potential fix for the situation as well. In other competing approaches such a feedback is difficult to obtain due to reliance on techniques which use variational autoencoders.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference67 articles.

1. ON THE ENERGY LOSS OF FAST PARTICLES BY IONISATION

2. 1990. Partitioning Around Medoids (Program PAM). Chapter 2 68–125. https://doi.org/10.1002/9780470316801.ch2 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316801.ch2

3. 2021. F1TENTH. https://f1tenth.org

4. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software available from tensorflow.org.

5. Alexander A. Alemi Ben Poole Ian Fischer Joshua V. Dillon Rif A. Saurous and Kevin Murphy. 2017. An Information-Theoretic Analysis of Deep Latent-Variable Models. CoRR abs/1711.00464(2017). arXiv:1711.00464 http://arxiv.org/abs/1711.00464

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3