1. [ 1 ] A. Gillet , 2021 . Empowering big data analytics with polystore and strongly typed functional queries . IDEAS 2021, pp. 13: 1 - 13 :10. [1] A. Gillet, et al. 2021. Empowering big data analytics with polystore and strongly typed functional queries. IDEAS 2021, pp. 13:1-13:10.
2. [ 2 ] S. Sahri , R. Moussa . 2021 . Customized eager-lazy data cleansing for satisfactory big data veracity . IDEAS 2021, pp. 157 - 165 . [2] S. Sahri, R. Moussa. 2021. Customized eager-lazy data cleansing for satisfactory big data veracity. IDEAS 2021, pp. 157-165.
3. [ 3 ] D.T. Wegrzyn . 2022 . The adaptation of the OODA loop to the decision-making systems processing Big Data in the area of morality . IDEAS 2022, pp. 144 - 149 . [3] D.T. Wegrzyn. 2022. The adaptation of the OODA loop to the decision-making systems processing Big Data in the area of morality. IDEAS 2022, pp. 144-149.
4. A big data science solution for transportation analytics with meteorological data;Kaur S.;IEEE BigDataSE,2022
5. [ 5 ] C.K. Leung , 2020 . Data science for healthcare predictive analytics . IDEAS 2020, pp. 8: 1 - 8 :10. [5] C.K. Leung, et al. 2020. Data science for healthcare predictive analytics. IDEAS 2020, pp. 8:1-8:10.