Deep Network for Image Compressed Sensing Coding Using Local Structural Sampling

Author:

Cui Wenxue1ORCID,Wang Xingtao1ORCID,Fan Xiaopeng1ORCID,Liu Shaohui2ORCID,Gao Xinwei3ORCID,Zhao Debin2ORCID

Affiliation:

1. Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

2. Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China and Peng Cheng Laboratory, Shenzhen, China

3. Wechat Business Group, Shenzhen, China

Abstract

Existing image compressed sensing (CS) coding frameworks usually solve an inverse problem based on measurement coding and optimization-based image reconstruction, which still exist the following two challenges: (1) the widely used random sampling matrix, such as the Gaussian Random Matrix (GRM), usually leads to low measurement coding efficiency, and (2) the optimization-based reconstruction methods generally maintain a much higher computational complexity. In this article, we propose a new convolutional neural network based image CS coding framework using local structural sampling (dubbed CSCNet) that includes three functional modules: local structural sampling, measurement coding, and Laplacian pyramid reconstruction. In the proposed framework, instead of GRM, a new local structural sampling matrix is first developed, which is able to enhance the correlation between the measurements through a local perceptual sampling strategy. Besides, the designed local structural sampling matrix can be jointly optimized with the other functional modules during the training process. After sampling, the measurements with high correlations are produced, which are then coded into final bitstreams by the third-party image codec. Last, a Laplacian pyramid reconstruction network is proposed to efficiently recover the target image from the measurement domain to the image domain. Extensive experimental results demonstrate that the proposed scheme outperforms the existing state-of-the-art CS coding methods while maintaining fast computational speed.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3