Affiliation:
1. North Carolina State University
2. Georgia Institute of Technology
3. Lawrence Livermore National Laboratory
Abstract
This work presents a systematic exploration on the promise and special challenges of deep learning for sparse matrix format selection---a problem of determining the best storage format for a matrix to maximize the performance of Sparse Matrix Vector Multiplication (SpMV). It describes how to effectively bridge the gap between deep learning and the special needs of the pillar HPC problem through a set of techniques on matrix representations, deep learning structure, and cross-architecture model migrations. The new solution cuts format selection errors by two thirds, and improves SpMV performance by 1.73X on average over the state of the art.
Funder
IBM Ph.D. Fellowship Award
DOE Early Career Award
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献