Intelligent Traffic Signal Control Based on Reinforcement Learning with State Reduction for Smart Cities

Author:

Kuang Li1,Zheng Jianbo1,Li Kemu1,Gao Honghao2

Affiliation:

1. Central South University, China

2. Shanghai University, China and Gachon University, South Korea

Abstract

Efficient signal control at isolated intersections is vital for relieving congestion, accidents, and environmental pollution caused by increasing numbers of vehicles. However, most of the existing studies not only ignore the constraint of the limited computing resources available at isolated intersections but also the matching degree between the signal timing and the traffic demand, leading to high complexity and reduced learning efficiency. In this article, we propose a traffic signal control method based on reinforcement learning with state reduction. First, a reinforcement learning model is established based on historical traffic flow data, and we propose a dual-objective reward function that can reduce vehicle delay and improve the matching degree between signal time allocation and traffic demand, allowing the agent to learn the optimal signal timing strategy quickly. Second, the state and action spaces of the model are preliminarily reduced by selecting a proper control phase combination; then, the state space is further reduced by eliminating rare or nonexistent states based on the historical traffic flow. Finally, a simplified Q-table is generated and used to optimize the complexity of the control algorithm. The results of simulation experiments show that our proposed control algorithm effectively improves the capacity of isolated intersections while reducing the time and space costs of the signal control algorithm.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3