AtomiS: Data-Centric Synchronization Made Practical

Author:

Paulino Hervé1ORCID,Almeida Matos Ana2ORCID,Cederquist Jan2ORCID,Giunti Marco1ORCID,Matos João2ORCID,Ravara António1ORCID

Affiliation:

1. Nova University Lisbon, Caparica, Portugal

2. University of Lisbon, Lisbon, Portugal

Abstract

Data-Centric Synchronization (DCS) shifts the reasoning about concurrency restrictions from control structures to data declaration. It is a high-level declarative approach that abstracts away from the actual concurrency control mechanism(s) in use. Despite its advantages, the practical use of DCS is hindered by the fact that it may require many annotations and/or multiple implementations of the same method to cope with differently qualified parameters. To overcome these limitations, in this paper we present AtomiS, a new DCS approach that requires only qualifying types of parameters and return values in interface definitions, and of fields in class definitions. The latter may also be abstracted away in type parameters, rendering class implementations virtually annotation-free. From this high level specification, a static analysis infers the atomicity constraints that are local to each method, considering valid only the method variants that are consistent with the specification, and performs code generation for all valid variants of each method. The generated code is then the target for automatic injection of concurrency control primitives that are responsible for ensuring the absence of data-races, atomicity-violations and deadlocks. We provide a Java implementation and showcase the applicability of AtomiS in real-life code. For the benchmarks analysed, AtomiS requires fewer annotations than the original number of regions requiring locks, as well as fewer annotations than Atomic Sets (a reference DCS proposal).

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3