1. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
2. James Bergstra and Yoshua Bengio . 2012. Random search for hyper-parameter optimization.Journal of machine learning research 13, 2 ( 2012 ). James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization.Journal of machine learning research 13, 2 (2012).
3. Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms
4. Bogdan Burlacu . 2022. Rank-based Non-dominated Sorting. arXiv preprint arXiv:2203.13654 ( 2022 ). Bogdan Burlacu. 2022. Rank-based Non-dominated Sorting. arXiv preprint arXiv:2203.13654 (2022).
5. Rajni Chahal , Santanu Roy , Martin Brehm , Shubhojit Banerjee , Vyacheslav Bryantsev , and Stephen T Lam . 2022. Transferable Deep Learning Potential Reveals Intermediate-Range Ordering Effects in LiF–NaF–ZrF4 Molten Salt. JACS Au ( 2022 ). Rajni Chahal, Santanu Roy, Martin Brehm, Shubhojit Banerjee, Vyacheslav Bryantsev, and Stephen T Lam. 2022. Transferable Deep Learning Potential Reveals Intermediate-Range Ordering Effects in LiF–NaF–ZrF4 Molten Salt. JACS Au (2022).