Voxel-wise Medical Images Generalization for Eliminating Distribution Shift

Author:

Li Feifei1,Wang Yuanbin1,Beyan Oya2,Schöneck Mirjam3,Caldeira Liliana Lourenco3

Affiliation:

1. Institute for Biomedical Informatics, Germany

2. Institute for Biomedical Informatics, Germany and Fraunhofer Institute for Applied Information Technology, FIT, Germany

3. Institute for Diagnostic and Interventional Radiology, Germany

Abstract

Nowadays, more and more machine learning methods are applied in the medical domain. Supervised Learning methods adopted in classification, prediction, and segmentation tasks for medical images always experience decreased performance when the training and testing datasets do not follow the i.i.d(independent and identically distributed) assumption. These distribution shift situations seriously influence machine learning applications’ robustness, fairness, and trustworthiness in the medical domain. Hence, in this paper, we adopt the CycleGAN(Generative Adversarial Networks) method to cycle train the CT(Computer Tomography) data from different scanners/manufacturers, which aims to eliminate the distribution shift from diverse data terminals, on the basis of our previous work[14]. However, due to the model collapse problem and generative mechanisms of the GAN-based model, the images we generated contained serious artifacts. To remove the boundary marks and artifacts, we adopt score-based diffusion generative models to refine the images voxel-wisely. This innovative combination of two generative models enhances the quality of data providers while maintaining significant features. Meanwhile, we use five paired patients’ medical images to deal with the evaluation experiments with SSIM(structural similarity index measure) metrics and the segmentation model’s performance comparison. We conclude that CycleGAN can be utilized as an efficient data augmentation technique rather than a distribution-shift-eliminating method. While the denoising diffusion model is more suitable for dealing with the distribution shift problem aroused by the different terminal modules. In addition, another limitation of generative methods applied in medical images is the difficulty in obtaining large and diverse datasets that accurately capture the complexity of biological structure and variability. In future works, we will evaluate the original and generative datasets by experimenting with a broader range of supervised methods. We will implement the generative methods under the federated learning architecture, which can preserve their benefits and eliminate the distribution shift problem in a broader range.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference37 articles.

1. Antreas Antoniou Amos Storkey and Harrison Edwards. 2018. Data Augmentation Generative Adversarial Networks. arxiv:1711.04340  [stat.ML]

2. Distributed Analytics on Sensitive Medical Data: The Personal Health Train

3. Hyungjin Chung and Jong Chul Ye. 2021. Score-based diffusion models for accelerated MRI. https://doi.org/10.48550/ARXIV.2110.05243

4. Fair Transfer Learning with Missing Protected Attributes

5. Josip Djolonga, Jessica Yung, Michael Tschannen, Rob Romijnders, Lucas Beyer, Alexander Kolesnikov, Joan Puigcerver, Matthias Minderer, Alexander D’Amour, Dan Moldovan, Sylvain Gelly, Neil Houlsby, Xiaohua Zhai, and Mario Lucic. 2021. On Robustness and Transferability of Convolutional Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 16458–16468.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3