Query modeling for entity search based on terms, categories, and examples

Author:

Balog Krisztian1,Bron Marc2,De Rijke Maarten2

Affiliation:

1. Norwegian University of Science and Technology

2. University of Amsterdam

Abstract

Users often search for entities instead of documents, and in this setting, are willing to provide extra input, in addition to a series of query terms, such as category information and example entities. We propose a general probabilistic framework for entity search to evaluate and provide insights in the many ways of using these types of input for query modeling. We focus on the use of category information and show the advantage of a category-based representation over a term-based representation, and also demonstrate the effectiveness of category-based expansion using example entities. Our best performing model shows very competitive performance on the INEX-XER entity ranking and list completion tasks.

Funder

Seventh Framework Programme

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

CIP ICT-PSP

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Principled Decomposition of Pointwise Mutual Information for Intention Template Discovery;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

2. GRAFS: Graphical Faceted Search System to Support Conceptual Understanding in Exploratory Search;ACM Transactions on Interactive Intelligent Systems;2023-05-05

3. Entity Embeddings for Entity Ranking: A Replicability Study;Lecture Notes in Computer Science;2023

4. Legal Information Retrieval System with Entity-Based Query Expansion: Case study in Traffic Accident Litigation;Journal of Computer Science and Technology;2022-10-17

5. Predicting Guiding Entities for Entity Aspect Linking;Proceedings of the 31st ACM International Conference on Information & Knowledge Management;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3