Affiliation:
1. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA
Abstract
The number of computer science (CS) courses has been dramatically expanding in U.S. high schools (HS). In comparison with well-established courses in mathematics and science, little is known about how the decisions made by HS CS teachers regarding how and what to teach impact student performance later in introductory college CS courses. Drawing on a large sample of 2,871 introductory college CS students at 115 U.S. institutions who had taken a CS course in HS, we examined the topic coverage and prevailing instructional methods in the HS course and investigated how these experiences influenced student performance in college CS. Controlling for differences in student background, we find two predictors of higher grades in college CS: greater frequency of coding-related activities in HS (programming, debugging, studying algorithms) and lower frequency of “non-coding” computer use (e.g., data analysis, computer security). Interaction models revealed a more complex story. Coding-related activity more heavily benefited students who did not have coding help available at home. In the 28% of college CS courses in which instructors employed innovative pedagogies, students with higher ACT or SAT mathematics scores had a greater advantage than in traditionally taught courses. Finally, in the innovative college courses, students whose HS CS exams had typically included testing on vocabulary did worse than students whose exams had not included such tests.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Education,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献