Decoupled Progressive Distillation for Sequential Prediction with Interaction Dynamics

Author:

Hu Kaixi1ORCID,Li Lin2ORCID,Xie Qing2ORCID,Liu Jianquan3ORCID,Tao Xiaohui4ORCID,Xu Guandong5ORCID

Affiliation:

1. School of Computer Science, University of Technology Sydney, Australia and School of Computer Science and Artificial Intelligence, Wuhan University of Technology, China

2. School of Computer Science and Artificial Intelligence, Wuhan University of Technology, China

3. Visual Intelligence Research Laboratories, NEC Corporation, Japan

4. School of Mathematics, Physics and Computing, University of Southern Queensland, Australia

5. School of Computer Science, University of Technology Sydney, Australia

Abstract

Sequential prediction has great value for resource allocation due to its capability in analyzing intents for next prediction. A fundamental challenge arises from real-world interaction dynamics where similar sequences involving multiple intents may exhibit different next items. More importantly, the character of volume candidate items in sequential prediction may amplify such dynamics, making deep networks hard to capture comprehensive intents. This article presents a sequential prediction framework with Decoupled Progressive Distillation (DePoD), drawing on the progressive nature of human cognition. We redefine target and non-target item distillation according to their different effects in the decoupled formulation. This can be achieved through two aspects: (1) Regarding how to learn, our target item distillation with progressive difficulty increases the contribution of low-confidence samples in the later training phase while keeping high-confidence samples in the earlier phase. And, the non-target item distillation starts from a small subset of non-target items from which size increases according to the item frequency. (2) Regarding whom to learn from, a difference evaluator is utilized to progressively select an expert that provides informative knowledge among items from the cohort of peers. Extensive experiments on four public datasets show DePoD outperforms state-of-the-art methods in terms of accuracy-based metrics.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Hubei Province

University of Technology Sydney

China Scholarship Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3