A Tensor Compiler with Automatic Data Packing for Simple and Efficient Fully Homomorphic Encryption

Author:

Krastev Aleksandar1ORCID,Samardzic Nikola2ORCID,Langowski Simon2ORCID,Devadas Srinivas2ORCID,Sanchez Daniel2ORCID

Affiliation:

1. Massachusetts Institute of Technology, Cambrdige, USA

2. Massachusetts Institute of Technology, Cambridge, USA

Abstract

Fully Homomorphic Encryption (FHE) enables computing on encrypted data, letting clients securely offload computation to untrusted servers. While enticing, FHE has two key challenges that limit its applicability: it has high performance overheads (10,000× over unencrypted computation) and it is extremely hard to program. Recent hardware accelerators and algorithmic improvements have reduced FHE’s overheads and enabled large applications to run under FHE. These large applications exacerbate FHE’s programmability challenges. Writing FHE programs directly is hard because FHE schemes expose a restrictive, low-level interface that prevents abstraction and composition. Specifically, FHE requires packing encrypted data into large vectors (tens of thousands of elements long), FHE provides limited operations on these vectors, and values have noise that grows with each operation, which creates unintuitive performance tradeoffs. As a result, translating large applications, like neural networks, into efficient FHE circuits takes substantial tedious work. We address FHE’s programmability challenges with the Fhelipe FHE compiler. Fhelipe exposes a simple, numpy-style tensor programming interface, and compiles high-level tensor programs into efficient FHE circuits. Fhelipe’s key contribution is automatic data packing , which chooses data layouts for tensors and packs them into ciphertexts to maximize performance. Our novel framework considers a wide range of layouts and optimizes them analytically. This lets compile large FHE programs efficiently, unlike prior FHE compilers, which either use inefficient layouts or do not scale beyond tiny programs. We evaluate on both a state-of-the-art FHE accelerator and a CPU. is the first compiler that matches or exceeds the performance of large hand-optimized FHE applications, like deep neural networks, and outperforms a state-of-the-art FHE compiler by gmean 18.5. At the same time, dramatically simplifies programming, reducing code size by 10–48.

Publisher

Association for Computing Machinery (ACM)

Reference88 articles.

1. 2020. HEAAN software library. https://github.com/snucrypto/HEAAN.

2. 2020. Lattigo. https://github.com/ldsec/lattigo.

3. 2020. Microsoft SEAL HE library. https://github.com/microsoft/SEAL.

4. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Gregory S. Corrado Andy Davis Je rey Dean Matthieu Devin Sanjay Ghemawat Ian J. Goodfellow Andrew Harp Geo rey Irving Michael Isard Yangqing Jia Rafal Józefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Gordon Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul A. Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda B. Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2016. TensorFlow: a system for Large-Scale machine learning. In OSDI-12.

5. Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia Yazicigil, Anantha Chandrakasan, Vinod Vaikuntanathan, and Ajay Joshi. 2023. FAB: An FPGA-based accelerator for bootstrappable fully homomorphic encryption. In HPCA-29.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3