Abstract
Distributed systems use randomized work stealing to improve performance and resource utilization. In most prior analytical studies of randomized work stealing, jobs are considered to be sequential and are executed as a whole on a single server. In this article, we consider a homogeneous system of servers where parent jobs spawn child jobs that can feasibly be executed in parallel. When an idle server probes a busy server in an attempt to steal work, it may either steal a parent job or multiple child jobs.
To approximate the performance of this system, we introduce a Quasi-Birth-Death Markov chain and express the performance measures of interest via its unique steady state. We perform simulation experiments that suggest that the approximation error tends to zero as the number of servers in the system becomes large. To further support this observation, we introduce a mean field model and show that its unique fixed point corresponds to the steady state of the Quasi-Birth-Death Markov chain. Using numerical experiments, we compare the performance of various simple stealing strategies as well as optimized strategies.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Introduction to the Special Issue on QEST 2021;ACM Transactions on Modeling and Computer Simulation;2023-10-31