Shuffled ImageNet Banks for Video Event Detection and Search

Author:

Mettes Pascal1ORCID,Koelma Dennis C.1,Snoek Cees G. M.1

Affiliation:

1. University of Amsterdam, Amsterdam, the Netherlands

Abstract

This article aims for the detection and search of events in videos, where video examples are either scarce or even absent during training. To enable such event detection and search, ImageNet concept banks have shown to be effective. Rather than employing the standard concept bank of 1,000 ImageNet classes, we leverage the full 21,841-class dataset. We identify two problems with using the full dataset: (i) there is an imbalance between the number of examples per concept, and (ii) not all concepts are equally relevant for events. In this article, we propose to balance large-scale image hierarchies for pre-training. We shuffle concepts based on bottom-up and top-down operations to overcome the problems of example imbalance and concept relevance. Using this strategy, we arrive at the shuffled ImageNet bank, a concept bank with an order of magnitude more concepts compared to standard ImageNet banks. Compared to standard ImageNet pre-training, our shuffles result in more discriminative representations to train event models from the limited video event examples. For event search, the broad range of concepts enable a closer match between textual queries of events and concept detections in videos. Experimentally, we show the benefit of the proposed bank for event detection and event search, with state-of-the-art performance for both tasks on the challenging TRECVID Multimedia Event Detection and Ad-Hoc Video Search benchmarks.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference79 articles.

1. Minimally Needed Evidence for Complex Event Recognition in Unconstrained Videos

2. LIBSVM

3. Bi-level semantic representation analysis for multimedia event detection;Chang Xiaojun;ToC,2017

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploiting Instance-level Relationships in Weakly Supervised Text-to-Video Retrieval;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-09-12

2. Transferable dual multi-granularity semantic excavating for partially relevant video retrieval;Image and Vision Computing;2024-09

3. Balancing Privacy and Utility in Surveillance Systems: An Overview;2023 International Conference on Platform Technology and Service (PlatCon);2023-08-16

4. Universal Prototype Transport for Zero-Shot Action Recognition and Localization;International Journal of Computer Vision;2023-07-19

5. Cross-Lingual Cross-Modal Retrieval with Noise-Robust Learning;Proceedings of the 30th ACM International Conference on Multimedia;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3