End-To-End Latency of Cause-Effect Chains: A Tutorial

Author:

Günzel Mario1ORCID,Teper Harun2ORCID,Brüggen Georg von der1ORCID,Chen Jian-Jia1ORCID

Affiliation:

1. Faculty of Informatics, TU Dortmund University, Dortmund, Germany

2. Faculty of Informatics, TU Dortmund, Dortmund, Germany

Abstract

In many applications of cyber-physical systems, a sequence of tasks is necessary to perform a certain functionality. For example, from a sensor to an actuator, the first task reads the sensor value (cause), the second task processes the data, and the third task produces an output for the actuator (an effect is triggered). For such scenarios, the end-to-end timing properties (the so-called end-to-end latency) of the sequence of tasks (the so-called cause-effect chain) are of importance. This tutorial recaps different metrics for the end-to-end latency of cause-effect chains, and summarizes fundamental properties and existing analytical results in a systematic manner. To that end, this tutorial has a special focus on the reaction time (how fast can a reaction be in the worst case) and the data age (how old is the data source of an actuation in the worst case). The goal of this tutorial is to provide a systematic view of the fundamental end-to-end timing properties of cause-effect chains and offer an outlook of possible research directions in the near future. Furthermore, we extend the proof of one fundamental property in the literature to comply with the current state-of-the-art definition of end-to-end latencies.

Funder

European Research Council

German Federal Ministry of Education and Research

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Reference44 articles.

1. The dataflow model

2. AUTOSAR. 2022. Specification of Timing Extensions (AUTOSAR CP R22-11). Retrieved January 18 2024 from https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_TPS_TimingExtensions.pdf

3. Synthesizing Job-Level Dependencies for Automotive Multi-rate Effect Chains

4. End-to-end timing analysis of cause-effect chains in automotive embedded systems

5. Efficient maximum data age analysis for cause-effect chains in automotive systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Timely ML;Real-Time Systems;2025-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3