DressCode: Autoregressively Sewing and Generating Garments from Text Guidance

Author:

He Kai12ORCID,Yao Kaixin13ORCID,Zhang Qixuan12ORCID,Yu Jingyi1ORCID,Liu Lingjie4ORCID,Xu Lan1ORCID

Affiliation:

1. ShanghaiTech University, Shanghai, China

2. Deemos Technology, Shanghai, China

3. NeuDim, Shanghai, China

4. University of Pennsylvania, Philadelphia, United States of America

Abstract

Apparel's significant role in human appearance underscores the importance of garment digitalization for digital human creation. Recent advances in 3D content creation are pivotal for digital human creation. Nonetheless, garment generation from text guidance is still nascent. We introduce a text-driven 3D garment generation framework, DressCode, which aims to democratize design for novices and offer immense potential in fashion design, virtual try-on, and digital human creation. We first introduce SewingGPT, a GPT-based architecture integrating cross-attention with text-conditioned embedding to generate sewing patterns with text guidance. We then tailor a pre-trained Stable Diffusion to generate tile-based Physically-based Rendering (PBR) textures for the garments. By leveraging a large language model, our framework generates CG-friendly garments through natural language interaction. It also facilitates pattern completion and texture editing, streamlining the design process through user-friendly interaction. This framework fosters innovation by allowing creators to freely experiment with designs and incorporate unique elements into their work. With comprehensive evaluations and comparisons with other state-of-the-art methods, our method showcases superior quality and alignment with input prompts. User studies further validate our high-quality rendering results, highlighting its practical utility and potential in production settings. Our project page is https://IHe-KaiI.github.io/DressCode/.

Funder

NSFC programs

STCSM

SHMEC

National Key R&D Program of China

Publisher

Association for Computing Machinery (ACM)

Reference78 articles.

1. Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023).

2. Autodesk INC. 2019. Maya. https://autodesk.com/maya

3. AUTOMATIC1111. 2022. Stable Diffusion Web UI. https://github.com/AUTOMATIC1111/stable-diffusion-webui

4. Seungbae Bang, Maria Korosteleva, and Sung-Hee Lee. 2021. Estimating garment patterns from static scan data. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 273--287.

5. Physics-driven pattern adjustment for direct 3D garment editing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3