Cooperative Slack Management: Saving Energy of Multicore Processors by Trading Performance Slack Between QoS-Constrained Applications

Author:

Nejat Mehrzad1ORCID,Manivannan Madhavan1,Pericàs Miquel1,Stenström Per1

Affiliation:

1. Chalmers University of Technology, Göteborg, Sweden

Abstract

Processor resources can be adapted at runtime according to the dynamic behavior of applications to reduce the energy consumption of multicore processors without affecting the Quality-of-Service (QoS). To achieve this, an online resource management scheme is needed to control processor configurations such as cache partitioning, dynamic voltage-frequency scaling, and dynamic adaptation of core resources.Prior State-of-the-art has shown the potential for reducing energy without any performance degradation by coordinating the control of different resources. However, in this article, we show that by allowing short-term variations in processing speed (e.g., instructions per second rate), in a controlled fashion, we can enable substantial improvements in energy savings while maintaining QoS. We keep track of such variations in the form of performance slack. Slack can be generated, at some energy cost, by processing faster than the performance target. On the other hand, it can be utilized to save energy by allowing a temporary relaxation in the performance target. Based on this insight, we present Cooperative Slack Management (CSM). During runtime, CSM finds opportunities to generate slack at low energy cost by estimating the performance and energy for different resource configurations using analytical models. This slack is used later when it enables larger energy savings. CSM performs such trade-offs across multiple applications, which means that the slack collected for one application can be used to reduce the energy consumption of another. This cooperative approach significantly increases the opportunities to reduce system energy compared with independent slack management for each application. For example, we show that CSM can potentially save up to 41% of system energy (on average, 25%) in a scenario in which both prior art and an extended version with local slack management for each core are ineffective.

Funder

European Processor Initiative

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Energy-Saving Technology for Carbon Dioxide Transcritical Wide Temperature Range Based on EMD Algorithm;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3