Secure Distributed Mobile Volunteer Computing with Android

Author:

Bibi Iram1,Akhunzada Adnan2ORCID,Malik Jahanzaib3,Khan Muhammad Khurram4,Dawood Muhammad5

Affiliation:

1. COMSATS University Islamabad, Islamabad, Pakistan

2. Cybersecurity Section, DTU Compute, Technical University of Denmark, Denmark

3. National Cyber Security Auditing and Evaluation Lab (NCSAEL), NUST, Pakistan

4. Senior Member, IEEE, Center of Excellence in Information Assurance (COEIA), College of Computer & Information Sciences, King Saud University, Saudi Arabia

5. Centre for Security, Communications and Network Research, Plymouth University, UK; and Faculty of Computer Science, University of Applied Sciences Darmstadt, Germany

Abstract

Volunteer Computing provision of seamless connectivity that enables convenient and rapid deployment of greener and cheaper computing infrastructure is extremely promising to complement next-generation distributed computing systems. Undoubtedly, without tactile Internet and secure VC ecosystems, harnessing its full potentials and making it an alternative viable and reliable computing infrastructure is next to impossible. Android-enabled smart devices, applications, and services are inevitable for Volunteer computing. Contrarily, the progressive developments of sophisticated Android malware may reduce its exponential growth. Besides, Android malwares are considered the most potential and persistent cyber threat to mobile VC systems. To secure Android-based mobile volunteer computing, the authors proposed MulDroid, an efficient and self-learning autonomous hybrid (Long-Short-Term Memory, Convolutional Neural Network, Deep Neural Network) multi-vector Android malware threat detection framework. The proposed mechanism is highly scalable with well-coordinated infrastructure and self-optimizing capabilities to proficiently tackle fast-growing dynamic variants of sophisticated malware threats and attacks with 99.01% detection accuracy. For a comprehensive evaluation, the authors employed current state-of-the-art malware datasets (Android Malware Dataset, Androzoo) with standard performance evaluation metrics. Moreover, MulDroid is compared with our constructed contemporary hybrid DL-driven architectures and benchmark algorithms. Our proposed mechanism outperforms in terms of detection accuracy with a trivial tradeoff speed efficiency. Additionally, a 10-fold cross-validation is performed to explicitly show unbiased results.

Funder

European Commission, under the ASTRID and FutureTPM projects

Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3