LLMs Still Can't Avoid Instanceof: An Investigation Into GPT-3.5, GPT-4 and Bard's Capacity to Handle Object-Oriented Programming Assignments

Author:

Cipriano Bruno Pereira1ORCID,Alves Pedro1ORCID

Affiliation:

1. Lusófona University, COPELABS, Lisbon, Portugal

Funder

Fundação para a Ciência e Tecnologia

Publisher

ACM

Reference32 articles.

1. Anonymous. 2023. How GPT-3.5 GPT-4 and Bard handled an Object Oriented Programming Assignment - Full Interaction Logs. This is the anonymized version to support peer review. 10.5281/zenodo.8246165

2. Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, et al. 2020. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information fusion 58 (2020), 82--115.

3. Tom Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared D Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell et al. 2020. Language Models are Few-Shot Learners. Advances in neural information processing systems 33 (2020) 1877--1901.

4. Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. 2023. Sparks of Artificial General Intelligence: Early experiments with GPT-4. arXiv preprint arXiv:2303.12712 (2023).

5. Yuzhe Cai Shaoguang Mao Wenshan Wu Zehua Wang Yaobo Liang Tao Ge Chenfei Wu Wang You Ting Song Yan Xia et al. 2023. Low-code LLM: Visual Programming over LLMs. arXiv preprint arXiv:2304.08103 (2023).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards the Integration of Large Language Models in an Object-Oriented Programming Course;Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 2;2024-07-08

2. A Picture Is Worth a Thousand Words: Exploring Diagram and Video-Based OOP Exercises to Counter LLM Over-Reliance;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3