1. Proofs of randomized algorithms in Coq
2. J. Avigad J. Hölzl and L. Serafin. A formally verified proof of the central limit theorem 2016. Submitted to JAR in July 2016 (https://arxiv.org/abs/1405.7012). M. Backes M. Berg and D. Unruh. A formal language for cryptographic pseudocode. In I. Cervesato H. Veith and A. Voronkov editors Logic for Programming Artificial Intelligence and Reasoning (LPAR 2008) volume 5330 of Lecture Notes in Computer Science pages 353–376. Springer 2008. doi: 10.1007/978-3-540-89439-1 26. C. Baier B. R. Haverkort H. Hermanns and J.-P. Katoen. Modelchecking algorithms for continuous-time markov chains. IEEE Trans. Software Eng. 29(6):524–541 2003 10.1109/TSE.2003.1205180 J. Avigad J. Hölzl and L. Serafin. A formally verified proof of the central limit theorem 2016. Submitted to JAR in July 2016 (https://arxiv.org/abs/1405.7012). M. Backes M. Berg and D. Unruh. A formal language for cryptographic pseudocode. In I. Cervesato H. Veith and A. Voronkov editors Logic for Programming Artificial Intelligence and Reasoning (LPAR 2008) volume 5330 of Lecture Notes in Computer Science pages 353–376. Springer 2008. doi: 10.1007/978-3-540-89439-1 26. C. Baier B. R. Haverkort H. Hermanns and J.-P. Katoen. Modelchecking algorithms for continuous-time markov chains. IEEE Trans. Software Eng. 29(6):524–541 2003 10.1109/TSE.2003.1205180
3. E.-E. Doberkat. Stochastic relations: Foundations for Markov transition systems. Studies in Informatics. Chapman & Hall/CRC 2007. E.-E. Doberkat. Stochastic relations: Foundations for Markov transition systems. Studies in Informatics. Chapman & Hall/CRC 2007.
4. A Verified Compiler for Probability Density Functions