SynFull

Author:

Badr Mario1,Jerger Natalie Enright1

Affiliation:

1. University of Toronto

Abstract

Modern and future many-core systems represent complex architectures. The communication fabrics of these large systems heavily influence their performance and power consumption. Current simulation methodologies for evaluating networks-on-chip (NoCs) are not keeping pace with the increased complexity of our systems; architects often want to explore many different design knobs quickly. Methodologies that capture workload trends with faster simulation times are highly beneficial at early stages of architectural exploration. We propose SynFull, a synthetic traffic generation methodology that captures both application and cache coherence behaviour to rapidly evaluate NoCs. SynFull allows designers to quickly indulge in detailed performance simulations without the cost of long-running full-system simulation. By capturing a full range of application and coherence behaviour, architects can avoid the over or underdesign of the network as may occur when using traditional synthetic traffic patterns such as uniform random. SynFull has errors as low as 0.3% and provides 50x speedup on average over full-system simulation

Publisher

Association for Computing Machinery (ACM)

Reference51 articles.

1. ESESC: A fast multicore simulator using Time-Based Sampling

2. A generic traffic model for on-chip interconnection networks;Bahn J. H.;Network on Chip Architectures,2008

3. WEST: Cloning data cache behavior using Stochastic Traces

4. C. Bienia "Benchmarking modern multiprocessors " Ph.D. dissertation Princeton University January 2011. C. Bienia "Benchmarking modern multiprocessors " Ph.D. dissertation Princeton University January 2011.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3