Towards Analysing Cache-Related Preemption Delay in Non-Inclusive Cache Hierarchies

Author:

Fischer Thilo Leon1ORCID,Falk Heiko2ORCID

Affiliation:

1. Institute of Embedded Systems, Hamburg University of Technology, Hamburg, Germany

2. Institute of Embedded Systems, Hamburg University of Technology, Hamburg Germany

Abstract

The impact of preemptions has to be considered when determining the schedulability of a task set in a preemptively scheduled system. In particular, the contents of caches can be disturbed by a preemption, thus creating context-switching costs. These context-switching costs occur when a preempted task needs to reload data from memory after a preemption. The additional delay created by this effect is termed cache-related preemption delay (CRPD). The analysis of CRPD has been extensively studied for single-level caches in the past. However, for two-level caches, the analysis of CRPD is still an emerging area of research. In contrast to a single-level cache, which is only affected by direct preemption effects, the second-level cache in a two-level hierarchy can be subject to indirect interference after a preemption. Accesses that could be served from the L1 cache in the absence of preemptions, may be forwarded to the L2 cache, as the relevant data was evicted by a preemption. These accesses create the indirect interference in the L2 cache and can cause further evictions. Recently, a CRPD analysis for two-level non-inclusive cache hierarchies was proposed. In this paper, we show that this state-of-the-art analysis is unsafe as it potentially underestimates the CRPD. Furthermore, we show that the analysis is pessimistic and can overestimate the indirect preemption effects. To address these issues, we propose a novel analysis approach for the CRPD in a two-level non-inclusive cache hierarchy. We prove the correctness of the presented approach based on the set of feasible program execution traces. We implemented the presented approach in a worst-case execution time (WCET) analysis tool and compared the performance to existing analysis methods. Our evaluation shows that the presented analysis increases task set schedulability by up to 14 percentage points compared to the state-of-the-art analysis.

Publisher

Association for Computing Machinery (ACM)

Reference47 articles.

1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2007. Compilers: Principles, Techniques & Tools(2 ed.). Pearson Education.

2. Sebastian Altmeyer. 2012. Analysis of Preemptively Scheduled Hard Real-time Systems. Ph. D. Dissertation. Universität des Saarlandes.

3. A New Notion of Useful Cache Block to Improve the Bounds of Cache-Related Preemption Delay

4. Resilience analysis

5. Cache-related preemption delay via useful cache blocks: Survey and redefinition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3