Exploring Uni-manual Around Ear Off-Device Gestures for Earables

Author:

Shimon Shaikh Shawon Arefin1ORCID,Neshati Ali2ORCID,Sun Junwei3ORCID,Xu Qiang3ORCID,Zhao Jian1ORCID

Affiliation:

1. School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

2. Ontario Tech University, Oshawa, Ontario, Canada

3. Huawei Human-Machine Interaction Lab, Markham, Ontario, Canada

Abstract

Small form factor limits physical input space in earable (i.e., ear-mounted wearable) devices. Off-device earable inputs in alternate mid-air and on-skin around-ear interaction spaces using uni-manual gestures can address this input space limitation. Segmenting these alternate interaction spaces to create multiple gesture regions for reusing off-device gestures can expand earable input vocabulary by a large margin. Although prior earable interaction research has explored off-device gesture preferences and recognition techniques in such interaction spaces, supporting gesture reuse over multiple gesture regions needs further exploration. We collected and analyzed 7560 uni-manual gesture motion data from 18 participants to explore earable gesture reuse by segmentation of on-skin and mid-air spaces around the ear. Our results show that gesture performance degrades significantly beyond 3 mid-air and 5 on-skin around-ear gesture regions for different uni-manual gesture classes (e.g., swipe, pinch, tap). We also present qualitative findings on most and least preferred regions (and associated boundaries) by end-users for different uni-manual gesture shapes across both interaction spaces for earable devices. Our results complement earlier elicitation studies and interaction technologies for earables to help expand the gestural input vocabulary and potentially drive future commercialization of such devices.

Publisher

Association for Computing Machinery (ACM)

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3