Optimal Control of Dynamical Systems using Calculus of Variations

Author:

Ghassan Younis Mona1ORCID

Affiliation:

1. Computer science, college of education, Al-Iraqia University, Iraq

Abstract

This paper explores the application of calculus of variations techniques for optimizing the control of complex dynamical systems. Determining control strategies that minimize cost metrics and satisfy constraints is critical across engineering disciplines like robotics, aerospace, and process operations. Classical optimal control methods, such as Pontryagin's Maximum Principle, transform an optimal control problem into a calculus of variations framework amenable to analytical and numerical optimization. We present a unified framework for applying these techniques, enabling dynamical systems defined by ordinary and partial differential equations to be optimized by conversion into a nonlinear programming form. Analytical approaches provide theoretical guarantees on control performance while numerical methods, like direct collocation and transcription, enable large-scale optimal control problems to be efficiently solved. The connections between dynamical systems, calculus of variations, and modern numerical optimization methods establish a holistic methodology for control engineers and applied mathematicians to design optimal controllers for physical systems. Case studies on real-time trajectory optimization, adaptive path planning, and dynamic process operations demonstrate the efficacy of the proposed optimal control framework across robotics, aerospace, power systems, and other applications.

Publisher

Mesopotamian Academic Press

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3