Why 3D in vitro cancer models are the future of cancer research?

Author:

Petrić TinaORCID,Sabol Maja

Abstract

Tumors are three-dimensional (3D) entities characterized by complex structural architecture which is necessary for adequate intercellular, intracellular and cell-to-matrix interactions among the aberrant cells in cancer. In the field of cancer research, 2D cell cultures are traditionally used for decades in the majority of experiments. The reasons for this are the vast benefits these models provide, including simplicity and cost effectiveness. However, it is now known that these models are exposed to much higher stiffness, they lose physiological extracellular matrix (ECM) on artificial plastic surfaces as well as differentiation, polarization and cell-cell communication. This leads to the loss of crucial cellular signaling pathways and changes in cell responses to stimuli when compared to in vivo conditions. Moreover, they cannot adequately mimic the complexity and dynamic interactions of the tumor microenvironment (TME) which is of great importance in anticancer drug treatments. 3D models seem more biomimetic compared to 2D cell monolayers because they offer the opportunity to model the cancer mass together with its environment which seems the key factor in promoting and directing cancer invasion. 3D cell culture with its additional dimensionality makes the difference in cellular responses because it influences the spatial and physical aspects of the cells in 3D culture. This affects the signal transduction and makes the behavior of 3D-cultured cells more physiologically relevant and reflective of in vivo cellular responses. This review focuses on major differences between 2D and 3D cell cultures, highlighting the importance of considering bioengineering humanized 3D cancer models as the future in cancer research. Additionally, it presents diverse 3D models currently used in cancer research, outlining their benefits and limitations. Precisely, this review highlights the differences between the 3D models with the focus on tumor stroma interactions, cell population and extracellular matrix composition providing methods and examples for each model from the studies done so far.

Publisher

Hrvatski Prirodoslovno Drustvo (Croatian Society for Natural Sciences)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3