Role of High Glucose-Induced Nuclear Factor-κB Activation in Monocyte Chemoattractant Protein-1 Expression by Mesangial Cells

Author:

Ha Hunjoo,Yu Mi Ra,Choi Yoon Jin,Kitamura Masanori,Lee Hi Bahl

Abstract

ABSTRACT. Although high glucose (HG) has been shown to induce nuclear factor-κB (NF-κB) activation in vascular cells, the upstream regulation and the biologic significance of NF-κB activation in diabetic renal injury are not clear. It was, therefore, examined if HG-induced generation of reactive oxygen species (ROS) and protein kinase C (PKC) activation are involved in NF-κB activation in mesangial cells (MC), and the role of NF-κB activation in HG-induced monocyte chemoattractant protein-1 (MCP-1) expression by MC was further investigated. Recent observations suggest that MCP-1 may play a role in the development and progression of diabetic nephropathy. HG rapidly induced NF-κB activation in MC as estimated by electrophoretic mobility shift assay. Supershift assay suggests that most of the binding activity arose from p50/p50 and p50/p65 dimers. Antioxidants, pyrrolidine dithiocarbamate, n-acetyl-l-cystein, and trolox effectively inhibited HG-induced NF-κB activation in MC. HG rapidly generated dichlorofluorescin-sensitive intracellular ROS in MC as measured by laser-scanning confocal microscopy. HG also activated PKC rapidly in MC. Inhibition of PKC effectively blocked HG-induced intracellular ROS generation and NF-κB activation in MC. HG increased MCP-1 mRNA expression by 1.9-fold and protein secretion by 1.6-fold that of control glucose in MC transfected with control vector but not in MC transfected with dominant negative mutant inhibitor of NF-κB (IκBαM). Inhibition of either PKC or ROS effectively blocked HG-induced, but not basal, MCP-1 protein secretion by MC transfected with control vector. Thus this study demonstrates that HG rapidly activates NF-κB in MC through PKC and ROS and suggests that HG-induced NF-κB activation in MC may play a role in diabetic renal injury through upregulation of MCP-1 mRNA and protein expression.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3