Induction of apoptosis in ischemia-reperfusion model of mouse kidney: possible involvement of Fas.

Author:

Nogae S,Miyazaki M,Kobayashi N,Saito T,Abe K,Saito H,Nakane P K,Nakanishi Y,Koji T

Abstract

Although ischemia-reperfusion of mouse kidney is known to cause severe renal failure due to tubular cell death, the exact cellular mechanism responsible for this phenomenon is not clear. To investigate the spatial and temporal development of renal cell death and the role of Fas/APO-1/CD95 (Fas) in this process, the left renal vessels were occluded in a group of mice for 30, 60, or 120 min followed by reperfusion for 24 h (n = 4 for each group). Analysis of the isolated DNA in agarose-gel electrophoresis revealed a typical ladder pattern of bands consisting of multiples of 180 to 200 bp, considered the hallmark of apoptosis. The intensity of the bands increased proportionately with the duration of ischemia. Histochemical analysis using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling showed the presence of nuclei with DNA double-strand breaks specifically in distal renal tubules of the outer medulla. The presence of apoptosis was also confirmed by electron microscopy. Analysis of total RNA by Northern blotting revealed one appropriate-sized band for Fas mRNA in the normal kidney, which intensified in the ischemia-reperfused kidney. Moreover, nonradioactive in situ hybridization revealed that distal renal tubular epithelial cells were positive for Fas mRNA in the outer medulla. Fas antigen was also localized to the renal tubular epithelial cells of the outer medulla by immunohistochemistry. The number of apoptotic cells in the ischemia-reperfusion kidney of the lpr/lpr mouse was low. These findings strongly indicate that ischemia-reperfusion of the kidney induces apoptosis of a specific area of tubular epithelial cells in the outer medulla through the Fas system.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3