Expression of the Type IV Collagenase System during Mouse Kidney Development and Tubule Segmentation

Author:

LEGALLICIER BRUNO,TRUGNAN GERMAIN,MURPHY GILLIAN,LELONGT BRIGITTE,RONCO PIERRE

Abstract

Abstract. Type IV collagenases matrix metalloproteinase-2 (MMP2) and MMP9 and their related proteins, MT1-MMP, tissue inhibitor of metalloproteinases 1 (TIMP1), TIMP2, and TIMP3, are expressed during kidney morphogenesis and nephrogenesis, but the renal ontogeny of these proteins is only partially known, and their persistence in the adult remains controversial. Their expression was analyzed from early metanephric stages to adulthood by Western blot semiquantitative analysis; laser confocal microscopy of whole-mount kidneys; and a two-step immunoperoxidase labeling procedure using specific markers of proximal tubule (megalin), ascending limb of Henle's loop (Tamm Horsfall protein), and collecting duct (Dolichos biflorusagglutinin lectin). By Western blot, all antigens were detected at day 11.5, peaked at day 16.5, and persisted in the adult at lower levels, although MMP2 was less modulated. All antigens were expressed in metanephric mesenchyme at embryonic day 11.5 and became concentrated in neural cell adhesion molecule-positive—induced mesenchymal cells at day 12.5. Only MT1-MMP and to a lesser extent MMP2 were detected in the ureter bud. At day 16.5, all antigens predominated in the cytoplasm of the proximal tubule, except TIMP1, which was mostly expressed in the ascending limb of Henle's loop and distal tubule. During tubule segmentation, components of the type IV collagenase system showed both spatial and temporal regulation. The distribution of gelatinases was not strictly superimposable to that of their natural inhibitors TIMP, especially for MMP9 and TIMP1. All components persisted in specific segments of the adult renal tubule, where MMP9, MMP2, and MT1-MMP showed an apical expression, suggesting that substrates for these enzymes should be in the tubule lumen or in the apical cell domain and not in the extracellular matrix. These results suggest that a regulated balance of gelatinase activity is required during kidney organogenesis and that gelatinases continue to play a role in adult renal tubule physiology.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3