Metal Oxide Coating On Biodegradable Magnesium Alloys

Author:

Pesode Pralhad,Barve Shivprakash,V. Wankhede Sagar,Chipade Amar

Abstract

Magnesium is a biodegradable metal that has potential in orthopaedics. It has several advantages over other metallic materials because it is biocompatible and degradable now being used for biomedical applications, including elimination of stress shielding effects, enhancing degradation properties and enhancing biocompatibility concern in vivo, eliminating the second surgery for implant removal. Bioabsorbable magnesium (Mg) and related alloys have been limited in their usage because of its lower corrosion resistance. Surface alteration and functionality, in addition to basic alloying, is an important technique to deal with Mg and its alloys' reduced corrosion resistance. Magnesium's rapid depreciation however is a double-edged sword because it's critical to match bone renewal to material corrosion. As a result, calcium phosphate coatings have been proposed as a way to slow down corrosion. There are various possible calcium phosphate phases and their coating methods and can give a few distinct properties to various applications. Despite magnesium's lower melting point and greater reactivity, calcium phosphate coatings require precise settings to be effective. Because of their toxicity, non-biodegradability, and much higher cost, the recently used inorganic conversion coatings are less appealing and their application is limited. Conversion coatings are a viable alternative technology that is based on a cost- effective, environmentally friendly, and biodegradable organic component. Surface chelating functional groups in these compounds allow them to link with the magnesium/surface hydroxide layer while also providing anchoring groups for the polymer topcoat. Nanoreservoirs with multilayer inhibitors for active self-healing corrosion resistance thrive in this environment. This study examines the organic conversion coatings for Mg and its alloys in depth.

Publisher

Area de Innovacion y Desarrollo, S.L. 3 Ciencias

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3